
2005 3rd IEEE International Conference on Industrial Informatics (INDIN)

Improvement of the Computer Network Transmission Band Usage
by Packing Agent Technology

Tomasz Bartczak', Stanislaw Paszczynski2, Member, IEEE and Bogdan M. Wilamowski3, Fellow Member, IEEE

1,2 Tomasz Bartczak and Stanislaw Paszczyn'ski, Department of Dispersed Systems, University of Computer Technology
and Management, Rzeszow, Poland, e-mail: (tbartczak, spaszczynski)owsiz.rzeszow.pl

3lBogdan M. Wilamowski, Department of Electrical & Computer Engineering, Auburn University, Alabama, USA,
e-mail: wilamoieee.org

Abstract- In this paper the algorithms which could improve
transmission band for computer network has been shown. The
analysis of file size distribution has shown that the typical
website has more than 40% of files with sizes smaller than
1kB. Additionally, these small files are more frequently used
because 80% of all references by client browser to website
resources are for these small files. The paper presents an idea
of a mobile agent, who could improve transmission band in
computer network, especially for HTTP files. The server agent
based on the resource list, required by the client compresses
the files into MTU (Maximum Transfer Unit) packs has been
designed. As a result, a number of transmitted packets
(frames) can be reduced several times.

Index Terms-transmission band usage, packing algorithm,
data compression.

I. INTRODUCTION

Today, thanks to modern technology, information exchange
is really fast. The number of people using Internet and Web
has increased significantly. Also, the quality and Internet
access is much better. Users expect fast, safe and reliable
data flow. However, one of the problems not only for
Internet users, is the limited availability of a transmission
band in a network. As the result of such situations the
access to the transmission band is limited, and this leads to
lower users' productivity and satisfaction (i.e. downloading
takes much more time than, could be acceptable). It is
known that most users give up waiting for information after
about 8 seconds by giving the computer a next command.
The network performance is being constantly improved and
this results with better usage of the transmission. There are
several solutions to improve usage of a transmission band:
advanced compression of data,
dividing data flow to several parallel flows,
increasing size of TCP (Transmission Control Protocol)
packets,
using protocols based on improved UDP (User Datagram
Protocol).
In some applications the above solutions increase
throughput (even 10 times) of data that is being used in the
network. Unfortunately, these solutions are costly and often
additional hardware is required.
There are other ways to improve usage of transmission
band. One of them [8] proposes a three-step process to
reduce the size of hypertext documents for reducing the

network traffic on the Internet:
Shrinking HTML documents by removing data that will not
alter the appearance and the function,
Encoding HTML documents by representing most frequent
used tags and words with single bytes,
Compressing HTML documents by using standard
compression utilities.
Another way to improve usage of transmission band is [61
specific extensions to the HTTP protocol for delta encoding
and data compression. Compression of HTTP request and
response messages [5] is used to optimize the final link
between a mobile client and a stationary base station. Other
compressions are also used [3, 4] to improve web structure
notion.
TCP manually and automatic tuning techniques [9, 10, 11,
12, 13] by adapting the transmission protocol to
transmission data are another way to improve usage of
transmission band.
For every computer network protocol [1, 2], there is
a specific maximum quantity of information (MTU) that can
be transmitted in one frame. MTU - Maximum Transfer
Unit is the maximum number of bytes that can be
transferred in a single packet between two computers in the
network. The MTU is associated with a complete path. The
MTU of a path is the minimum of the MTU of the
individual links in the path. For Ethernet, the MTU size is
1500 bytes. When PPPoE is used, the MTU size is reduced
by eight bytes because of the additional overhead.
Unfortunately, the packets do not use all of their capacities.
For example, when much smaller file than MTU is being
sent in a single packet then many bytes in the frame are not
being used. Transmission protocols often send them in data
packets with padding. For example, telnet typically sends
one character in one data packet, when entered by client
keyboard and the associated overhead is significantly larger
than actual information. If a lot of files of small sizes are
being sent then fraction of user data in total flow is
significantly reduced. This effect is similar to usage of hard
disc space especially when small files are saved and
information where data is saved takes more of disk space
than actual data.

0-7803-9094-6/05/$20.00 ©2005 IEEE 384
Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

II. METHODS TO INCREASE THE TRANSMISSION
THROUGH-PUT

Search engines are one of the most used processes on the
Internet. The website, in order to be fully displayed, must
receive all the files. Before the webpage is fully displayed
sometimes as many as 50 different kind and size files (tab.
1, 2) are required [71.

Tab. 1. Distribution of files sizes at main pages of selected
website.

File size distribution in percent for main
pages of selected websites

The files are transmitted from the website using
communication protocols that shape them to specific size
and split into packet with appropriate packet headers.
Besides transferring of the useful data (i.e. websites files),
protocols generate an additional traffic of data exchange
depending on transmission protocol (frames for openings
and closings sessions, acknowledgement frames, etc.)
Traffic analyses show that user data transferred in the
network occupy only a small fraction of transmission band.
One can define the coefficient E of user data transmission
efficiency for given protocol as:

_ D
DT

(1)

where D is data volume to be transferred, and DT is volume
of total transferred information. E satisfies relation E<1 and
E=1 for ideal case (ideal protocol). Typically E has value
even smaller then 0.2 for LAN [5].
There are several ways to improve channel performance.
One of them is optimization of the transmission algorithm
by reduction of the quantity of transmitted information
fragments. When the quantity of protocol frames is being
limited, the fraction user data in total flow is being
increased. In the case of small files it's possible to
concatenate some of the files into one, which still can be
sent in one packet. This situation could be compared to car

traffic, when drivers decide to use public transportation
instead of their own cars.
Based on these ideas two algorithms, which could improve
channel performance, are proposed. Block diagrams for
these algorithms are shown in Fig. 1, Fig. 2, Fig. 4 and Fig.
5.

Tab. 2. Distribution of files sizes at selected distance-
learning courses. IT ESS2 is for HP IT Essentials lI:
Network Operating Systems course on cisco.netacad.net and
CCNA is for Cisco Certified Network Associate course on
cisco.netacad.net.

File size distribution in percent for
selected distance leaming courses

Enter the list of files and their size.
Sort the files by size.
Set the status of all files to "free".
Create empty packet.
Set the option of a measured file to the grater file on the list.
If size packet+file+tag < MTU then concatenate file to
packet, add tag and set file status to "occupied".
If there is next file with "free" status then set the option of a
measured file to the next file ofthe list with status "free".
if there is file with "free" status then go to 6, else STOP.

Fig. 1. Pseudo-code of the file packing algorithm 1.

385

Files sizes [B] onet.pl interia.pl wsiz.rzesz sejm.gov.
ow.pl Il

<100 16 13 8 4
100 - 500 16 17 40 0

501 - 1000 3 0 12 11

1001 - 1500 22 0 4 44

1501 - 3000 22 25 4 15

3001- 4500 6 8 0 15

4501 - 6000 6 17 0 4

6001 - 10000 6 17 28 4

Above 10000 3 4 4 4

Total size [B] 154758 148752 187458 124635

Total number 32 24 25 27
of files

32 ___24 25__ 27

Files sizes [13 IT ESS2 CCNA

<100 1 8

100 - 500 2 14

501 - 1000 24 19

1001 - 1500 15 6

1501 - 3000 7 1

3001 - 4500 21 3

4501 - 6000 4 4

6001 - 10000 7 21

Above 10000 19 24
Total number

of files 2847 11380

-1a

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

3,5
3 ~~~~~~~~~~0a r ~~~~~~~~~~3-

Read the list of files / 2,5- * 0
and their size 0 e

c 22

i,s AS~~~~~~~~~~pA
Sort the files by size, set the status of all E I A

files to free" | At, html
0,5 - A gif, jpg -

10 100 1000 10000
Create an empty packet Fl ie B, ~~~~~~~~~~~~~~~~~~~~~~~Filesizes[BJ

Fig. 3. Compression ratio as file sizes function (zip
Set the option of a measured file to the compressor) for some set of typical content website.

greater file on the list

s ize(packet+file+tag)
Y MTU? Read the list of files

and their size

Concatenate file to packet, add
tag, set a file status to

.occupied" Sort the files by size, set the status of all
files to free"'

there s Create an empty packetwi
y th'free"status?

lIr Set the option of a measured file to the
Set the option of a measured greater file on the list
file to the next file of the list

with "free" status .,

/t\ ~~~~~~~~~~~~~~~~~~~S=sizecompressed("packet" +file +tag)

T

If S<=MTU ?

ST
Add file to packet, add tag, set

Fig. 2. Block diagram of the file packing algorithm 1. afile status to "occu|ed'

If a prepared portion of information is much bigger than
MTU, then using data compression would be efficient. t ereisnext

,~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'t _ ft we e" statusY
However, for a small portion of data (files up to a couple
hundred bytes) data compression is not worthy and what is Set the option of a measured
even worse is that in these cases sizes of compressed files file to the next file of the list Compress packet and save
would be most likely greater then uncompressed ones (Fig.
3).
The compression ration depends on the type of the files. is e w

T restatus?For example text files, numerical data, or HTML files can
be efficiently compressed while files like GIF, PNG, JPEG,
or PDF would be difficult to compress. Therefore, based on STOP
a file size itself it is not possible to estimate size of a file Fig. 4. Block diagram of the file packing algorithm with
after compression. It's much easier to concatenate files into compression (algorithm 2).
packets, so the size of a file is similar (but less or equal with
header added) to the size ofMTU. Compression can be also
added to the process as shown in the algorithm on Fig 4 and
Fig 5.

386

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

Enter the list of files and their size.
Sort the files by size.
Set the status of all files to "free".
Create empty packet.
Set the option of a measured file to the grater file on the list.
Set S = size compressed (packet+file+tag).
If S < MTU then add file to packet, add tag and set file
status to "occupied".
If there is next file with "free" status then set the option of a
measured file to the next file of the list with status "free",
else compress packet and save.
if there is file with "free" status then go to 6, else STOP.

Fig. 5. Pseudo-code of the file packing algorithm with
compression (algorithm 2).

Because

k-g<<Ak-A, (6)

then using (3)-(6) the following relation can be written

Dk> Dnl (7)

From definition (1) and relation (7)

Ek<Enl (8)

This means that transmission band could be better used by
utilization of algorithm 1.
For algorithm 2 there is relation

Both algorithms reduce the required number transmitted
packets k to n1 or n2. We have:

k ni

DT =ER. +kH+Ak , DT =R, +n1H+An

DT =ERP1 +n,H +A (2)

where R, - size of i-th file, Rpi - size of i-th packet with the
files, k - number of files to be sent, H - sum of header and
footer sizes in every packet, A - size of additional data
transferred beside data packets (i.e. acknowledgment,
collision packets), n, - number of packets sent using
algorithm 1, n2 -number ofpackets sent using algorithm 2.
There exists relation

k>nl, (3)

because several files are added in one packet
transmitted by one frame in algorithm 1. Thus transm
frames number is decreased and the number of headers
tails is decreased. Size of additional data transferred b
data packet is decrease, which we can write as:

Ak>Anl

and using (2)

nI>n2 (9)

because files are additionally compressed and packed into
packets with sizes very close but not greater than MTU size
The average number of files in one packet prepared by
algorithm 2 is bigger than this prepared by algorithm 1.
Thus, the number of frames, headers, tails and additional
data transferred is also smaller, which can be described by
relation

AnP'An2 (10)

Additionally

"I n?

XRPl >ERP,
i=l i=l

(1 1)

because of a reduction of number of packets in comparison
with the number obtained by means of algorithm 1.
From expression (9)-(1 1) the following relation can be
obtained

DnP'Dn2*-(12)

(4) From definition (1) and expression (12)

(13)

n, k

YR, =Ri- k-g (5)

where g is tag size, which is usually very small (typically is
less then 10 B per file packed). Tag also includes file name
for identification. So, user data size is a little bit higher
when packet are composed but a profit on reduction of total
number of transferred packets is significant (i.e. we observe
in FTP protocol that for one frame with data transmitted
there was about 1 kB additional information transmitted too.
It is significantly bigger than sum of tags and file names in
packet).

This means, that algorithm 2 is better for transmission band
usage than algorithm 1.
These types of algorithms take much more time for packets
preparation, but it could be shown that it is still a small
fraction of total transmission time (time for packets
preparation + their transmission time) for contemporary
servers with high speed microprocessors. The agent could
prepare the packets in advance taking into account statistics
of site node visits thus additionally reducing total
transmission time. (The computational complexity of the
algorithms will be estimated soon)

387

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

a)
Sre AeiSewer Trasmsission reqest (ties fst)

1 Aokrow"-dTotd~ C E E fb-
Coffnuicaon

b)
Sever alent

Trassnsssion reqest (files ist

Packet size<-J EMI mm
Acknowledgemest packets l l

*

Pacidrg agent

f
- data

E - padde

I header

Conmourdcabon Unpacldng agest

Fig. 6. An idea of reduction a number of packets sent in
TCP/IP protocol by use the packing agent. a) without
packing, b) with packing agent.

With the implementation of algorithms shown above, the
mobile agent technique [14, 15, 16] can be used (Fig. 6).
Agent placed on side of a sender would be responsible for
preparing packets for transmission and agent placed on a

receiver side would be responsible for the recovering
information to its original form.
The mobile agent technique can be very effective in the case

when there is no resident packing agent on the server.

Agents could realize also other tasks e.g. searching and/or
filtering information before packing. The size of such agent
can be relatively very small (in our research the packing
agent code size was equal to 55kB) thus the cost of its
transmission and required system resources - neglected.

Mobile agents could be very convenient when fitting to
frequently changed transmission protocol would be
required. To obtain mobile version of the agent our code
has to be significantly reworked and equipped with
"mobility" procedures as well as appropriate "credential"
for used ontology.

III. EXPERIMENTAL RESULTS

In the experiment, simple two nodes network with client -
server configuration has been used. Information was sent in
three different ways: traditional, and then with proposed
two algorithms. The obtained results were compared.

25,0%
. ~ ~~~~~~o T ESS2

20,0% -1m 2 CCNA

15,0%

10,0%

5,0%

<101 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 1201- 1301- 1401-
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

File izes

Fig. 7. Distribution in percent of file sizes (smaller then Ethernet
protocol MTU).

Traffic was measured by TCPdump, which is the linux tool
(see www.tcdump.org tool for details). 1460 files were used
with the total size of 785919 bytes. The average size was

538 bytes, with a distribution as on Fig. 7. It took 70
seconds to send unmodified information using FTP (File
Transfer Protocol) and 21935 packets were required to
transmit this information.
When the algorithm 1 was used the 1460 files were packed
to 565 packets, at a total size of 825339 bytes (average
1460 bytes). The number of files was reduced by to 38.7%
(packets with data). In the case of algorithm 1 only 8498
packets were required and 28 seconds were needed to
transmit the information. The number of sent packets had
been reduced to 38.7%. These two numbers are identical,
because the reduction of files and packets sent are

proportional. In this experiment it is linear function,
because collisions are eliminated. The transfer time was

reduced to 40%.

Tab. 3. Coefficient of user data transmission efficiency and
transfer time with algorithm 1 and algorithm 2.

When the algorithm 2 was used the number of files was

reduced to 394 data packets, at a total size of 579276 bytes
(average 1472 bytes). Only 5930 packets were required and
only 20 seconds were needed to transmit the information.
The number of files as well as number of packets sent was

reduced to 27%. The transfer time was reduced to 28.6%.
Above results show an optimal usage of size MTU packet in
a reduced amount of time, although the information sent
was 5% bigger than the first one (because the added tags
identified files in packets). Also, the number of sent packets
had been reduced.
The experiment contained two parts: preparing the packets
and sending the information. The time required to
preprocess the information depends on the speed of the used
computer. In the experiment Pentium IV processor with 1,3
GHz clock was used. The algorithms were implemented in
C++ language. In this case, the time to prepare the packets
with algorithm I was 13 seconds and for second algorithm
17 seconds were required. In this stage of investigations we
didnt optimize the speed of computer programs. We expect

388

Information
total

E- Informatio transfer
time withcoefficient n transfer prepartg

of user data time [s] and
Transmission transmission unpacking

method efficiency packets [s]
standard 3,21 70 70

with2J284
algorithm 1 2,15 28 41

with
1,97 20 37algorithm 2 19 03

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

that after eliminating intermediate disk operations in these
programs they will run at least 10 times faster. Anyway, in
this experiment the total transmission times were reduced to
58.6% and to 52.9% respectively.
We expect also additional significant reduction of packet
sent by FTP after using RAM disk instead hard disk (even 5
times) due to a big difference in their access (read/write)
times an also after appropriate "tuning" of TCP protocol.
For FTP and used computer system the hard disk is too slow
so it causes a re-fragment of some packets by FTP before
transfer and thus unnecessary growth of the total number of
packets sent.
We observed similar as above shown influence of
elaborated algorithms on transmission efficiency for other
sets of files for k >500.
Time needed to retrieve information on the receiving side
(client side) can be neglected in comparison with time
required for packet preparation. For the algorithm 1
(typically it was less than lOms) it is only time required for
localization file in unpacking packet and for algorithm 2
additional times for single uncompressing process of the
data part of packet (typically was less than 100 ms).

IV. CONCLUSION

The proposed approach seems to be effective and better
usage of a transmission band is possible. Implementation
through the agent technique is cheap and easy to use.
Presented algorithms can be improved by using more
advanced files packing algorithms and using optimal
compression algorithms for different file types (intelligent
compressor). Also research concem E(k) dependence for k
< 500 will be realized.

V. REFERENCES

[1] RFC 2616, Fielding R. at al., Hypertext Transfer Protocol --
HTTP/1.1, June 1999, http://www.rfc-editor.org/

[2] RFC 959, Postel J. at al., File Transfer Protocol, October
1985, http://www.rfc-editor.org/

[3] M. Adler and M. Mitzenmacher, "Towards compressing web
graphs", In Proc. of the IEEE DCC, March 2001, pp. 203-
212.

[4] T. Suel, J. Yuan, "Compressing the Graph Structure of the
Web", Proc. ofthe IEEE DCC, March 2001, pp. 213-222.

[51 R. Krashinsky, "Efficient Web Browsing for Mobile Clients
using HTTP Compression", Technical Report MIT-LCS-TR-
882, MIT Lab for Computer Science, Jan. 2003.

[6] J. C. Mogul, F. Douglis, A. Feldmann, B. Krishnamurthy,
"Potential benefits of delta encoding and data compression
for HTTP", Proc. ofthe ACMSIGCOMM '97 conference on
Applications, technologies, architectures, and protocols for
computer communication, 1997.

[7] J. Charzinski, "HTTPITCP connection and flow
characteristics", Performance Evaluation 42 (2000), pp.
149-162.

[8] B. Choi, N. Bharade, Network traffic reduction by hypertext
compression, Proc. of the International Conference on
Internet Computing, 2002, pp. 877-882.

[9] H. Chen, P. Mohapatra, "CATP: A Context-Aware
Transportation Protocol for HTTP", Proc. of the 23rd
International Conference on Distributed Computing Systems
Workshops (ICDCSW'03), May 2003, pp.922-927.

[10] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux,
H. Wium Lie, Ch. Lilley, "Network Performance Effects of
HTTP/1.1, CSSI, and PNG, Applications, Technologies,
Architectures, and Protocols for Computer Communication",
Proc. of the ACM SIGCOMM '97 conference on
Applications, technologies, architectures, and protocols for
computer communication, 1997.

[11] E. Weigle, W. Fang, "A Comparison of TCP Automatic
Tuning Techniques for Distributed Computing", Proc. Ofthe
I Ih IEEE International Symposium on High Performance
Distributed Computing HPDC, November 2002.

[12] Y. Miyake, T. Hasegawa, T. Hasegawa, T. Kato,
"Acceleration of TCP Throughput over Satellite-Based
Internet Access Using TCP Gateway", Proc. of the Fifth
IEEE Symposium on Computers and Communications
(ISCC), July 2000, pp. 245-253.

[13] B. Tierney, "TCP Tuning Guide for Distributed Applications
on Wide-Area Networks" In USENIX & SAGE Login,
http://www-didc.lbl.gov/tcp-wan.html, February 2001.

[14] R. Pinheiro, A. Poylisher, H. Caldwell, "Mobile agents for
aggregation of network management data" In Proc of the
First International Symposium on Agent Systems and
Applications and Third International Symposium on Mobile
Agents (ASA/MA99), October 1999, pp. 130-140.

[15] M. Wooldridge, N. R. Jennings, "Pitfalls of Agent-Oriented
Development", In K. P. Sycara and M. Wooldridge, editors:
Agents '98: Proc. ofthe Second International Conference on
Autonomous Agents, May 1998.

[16] L. Wilson, D. Burroughs, A. Kumar, J. Sucharitaves, "A
framework for linking distributed simulations using software
agents", In Proc. of the IEEE, Special issue on agents in
modeling and simulation: exploiting the metaphor, February
2001, vol. 89, pp. 174-185.

389

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

